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Abstract —This paper investigates the use of a machine learning system

applied to the tuning of waveguide filters. l%is system employs teckdques
from pattern recognition and adaptive signaf processing. The manual

tuning of the wavegoide filters is very time consuming and expensive and a

skilled operator is required. Here, the machine learning system is adapted

in such a way that it can assist an unskilled operator to perform fast and

accurate tuning of these filters.

I. INTRODUCTION

w AVEGUIDE filters (WGF’S) are tuned once the

filters have been assembled. The traditional ap-

proach to the tuning of these filters is to check the re-

sponse of the filter at a number of critical frequencies and

adjust a set of tuning screws in order to bring the filter

response within some predefine specification. This proce-

dure is carried out manually and can be thought of as a

humanly performed real-time optimization. This tuning

method is very time consuming and expensive and a skilled

operator is required. Therefore, automatic tuning of these

filters would be a more desirable and cost-effective alter-

native. In spite of the wide range of applications for

waveguide filters, there have not been many contributions

to the studies of computer-aided alignment of WGF’S. In

previous publications, standard procedures for manual

tuning of these filters have been described [1]–[3], but

these methods are not suitable for constructing a com-

puter-based tuning system. Work on computer-aided filter

alignment has been very limited [4], and these methods are

predominantly based on theoretical treatment and model-

ing of the filters.

In this paper a different approach is introduced for the

tuning of the waveguide filters. Here a machine learning

system (MIS) is adapted in such a way that it can assist an

unskilled operator to perform accurate and fast tuning of

the filters. The machine learning approach is based on the

manipulation of some raw data to extract a set of salient
features which have strong significance in the behavior of

the filters. These features are derived visually, by compar-
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Fig. 1. Block representation of the machine learning system.

ing the characteristics of a tuned filter with a faulty filter

with known levels of maladjustments.

In Section II, we briefly describe the main principles of

the MLS used. Section III gives an introduction to wave-

guide filters and illustrates how they are tuned manually.

In Section IV, we consider the adaptation of the MLS to

this problem. The MLS has been used for fine tuning of

WGF’S and Section V presents some results. The MLS

approach is not yet a complete solution to this problem,

and some manufacturing tolerances have been ignored, but

this paper presents a new approach for the development of

an automated tuning system for WGF’S.

II. OUTLINE OF THE MACHINE LEARNING SYSTEM

Fig. 1 shows a block representation of the MLS used.

The overall system can be thought of as an equivalent to

an expert system, where there is a “ training mode” ~d a

“use mode.” In the training mode, the expertise of a

skilled operator is represented and stored in such a way
that it can be accessed later in the use mode. The main

difference between the MLS and a conventional expert

system is in the way in which the information is obtained

and represented. In a conventional expert system, the

information is stored in the form of explicitly stated rules,

and in the use mode the system makes decisions by match-

ing the inputs to the predefine rules. In the MLS ap-

proach, we employ techniques from pattern recognition

and adaptive signal processing to form two types of classi-
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fiers, distance classifiers and adaptive combiners. In the

training mode, the “expert” information is represented in

the form of mathematical relationships in the classifiers.

In general, the distance, classifiers are used to narrow

down the problem area, and the adaptive combiners are

used for finer adjustments. When the MLS is used for any

application, the first step is to decide on a reference

characteristic for the device under test (DUT) which would

represent the specifications required from the device. This

reference characteristic must be unique for every set of

adjustments, since” an optimal setting cannot be achieved.

The next step is to decide on a number of salient featurm

within the reference characteristic that reflect the proper-

ties and the sensitivity of the adjustable parameters de-

fined for the device. These two steps are of primary

importance in the adaptation of the MLS to a particular

problem, since the rest of the system depends on these

decisions. In the following sections, we describe the train..

ing and the use mode of the distance classifiers and the

adaptive combiners.

A. Distance Classifiers

As mentioned above, the distance classifiers are used to

distinguish between different states which may exist for

the device. In the training mode, an n-dimensional feature

space is formed (Fig. 2) where n is the number of features.

Next, a number of feature sets are collected for each state

of the device, and each feature set is represented as a point

in the feature space. By collecting a number of points

belonging to a particular state, we form a cluster. In the

use mode, a new feature set is generated from the DUT,

and this would again be represented as a point in the

feature space, i.e., point ~ in Fig. 2. In order to decide

which cluster this new point lies with@, we find the

distance between ~ and each of the clusters, i.e., rl, rz, and

r~. The simplest form of classification consists in measur-

ing the geometric distance of the new point, Z, from the

centroids of each cluster. The main disadvantage of this

method is that it does not take into account the distribu-

tion of the points in the clusters. A more general measure

Fig. 3.
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of the distance, known as the Mahalanobis distance [5] (see

Appendix I), can be used which requires not only the

centroicls of each cluster but also the variances’ and the

covariances of the points within the clusters.

B. Adaptive Combiners

The adaptive combiners in the MLS are implemented

using 1 linear combiners’ in parallel, where 1 is the number

of adjustable parameters in the device. Fig. 3(a) shows a

block representation of the adaptive cornbjners in the

training mode, and Fig. 3(b) illustrates the structure of one

combiner trained for one particular fault. During the train-

ing’ mode, feature sets are collected from the DUT when

its performance meets the specification, i.e., it is close to a

good device, and also when the pikatneters of the device

are maladjusted to some known values. These feature sets

are represerited as matrix y in Fig. 3(a). Corresponding to

X,’ matrix ~ is generated which contains t~e values of each

of the adjustable parameters of the DUT, corresponding to

the measured features. For example, when the device ii

behaving correctly, the corresponding desired values for all

the parameters would be zero. Usin~g these two matrices as

the inputs to a recursive least squares algorithm (RLS) [6],

[7], see Appendix II, we estimate the weight matrix N for
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Fig. 4. Top view of a six-cavity waveguide filter.

the linear combiners. After training, the linear combiners

are supplied with the estimated weight values to provide a

parallel measurement system, Fig. 3(c), which indicates the

magnitude and the direction of the required adjustments in

order to bring the performance of a faulty device within

required specifications. Matrices x and ~ have dimensions—
n by m and 1 by m, respectively, where m is the number

of training feature sets. The weight matrix u will have a

dimension n by 1.

In order to summarize the principle of the MLS, the

following steps must be taken when adapting the MLS to

any application. These steps should not necessarily be

taken in the order given here.

1) Decide on the reference characteristics of the DUT

and the corresponding data collection technique.

2) Decide on a set of salient features to extract from

the reference characteristics.

3) Decide how the distance classifiers and the adaptive

combiners will be used.

The MLS described here allows “learning” at any time

in the use mode. In other words, if in the use mode the

MLS fails to indicate the correct adjustments, then, once

the faults have been found by some other means, the

corresponding feature set may be entered in the system as

a further training example, In this way, the MLS will

improve its performance with experience.

III. WAVEGUIDE FILTERS (WGF’S)

The MLS has already been used for fault diagnosis in

communications equipment [8], [9], and the waveguide

filter example has been used as another application for the

MLS. There are two main reasons for this choice. One is

the fact that WGF’S are very sensitive to small maladjust-

ments of their tuning screws and there is a high level of
interaction between the screws. Therefore, it is a very

challenging problem for the MLS. The other is the fact

that these filters take a very long time to be tuned manu-

ally. As a typical example, a sixth-order filter, which has

13 screws, six for tuning and seven for coupling, would

take approximately 35–45 minutes to be tuned by a skilled

operator. Therefore, there is a demand for a computer-

based filter tuning system with the objective of reducing

the time taken to tune the devices.

Fig. 4 shows the top view of a six-cavity WGF. There

are two types of screw. One type is the tuning screw,

bigger in size; the other is the coupling screw. The tuning

Fig. 5. The Sll polar and log magnitude characteristics of a good filter.
For log magnitude, the vertical scale is 10 dB per division and the

horizontal scale is 20 MHr per division. The center line corresponds to

O dB return loss, For polar plot, return loss is displayed radiafly from

the center on a linear scrde with a magnitude of 0.1 (– 20 dB),
corresponding to the outer ring. Phase information is measured as

u rotation from the right-hand horizontal axis. Markers display
complex response near to the band edges and the center frequency.
Filter center frequency = 10.532 GHz, bandwidth= 0.138 GHz, and

minimum loss = 32.1 dB,

screws are used to move the resonant frequencies of the

corresponding cavities. The coupling screws between the

two cavities are used to couple the adjacent cavities, and

the two end coupling screws are used to couple the filter to

the outside world.

The filters used for this study were supplied by Ferranti

(Dundee, Scotland). In the production environment, the
operator tunes the filters manually by looking at the log

magnitude of the return loss of the filter, i.e., S1l. Fig. 5

shows a typical Sll characteristic which meets a certain set

of customer specifications. The procedure adapted at Fer-

ranti for the manual tuning of these filters can be summar-

ized as follows:

1)

2)

3)

4)

All the screws are removed.

The tuning screws are inserted one at a time, start-

ing from the input to the filter. Each time a screw is

inserted, it is turned clockwise to bring the resonant

frequency of the corresponding cavity within the

filter bandwidth.

When all the turning screws are inserted, there must

be n resonant frequencies in the passband, where n

is equal to the number of cavities in the filter. Thus

each tuning screw corresponds to a notch in Fig. 5.

However, the return loss characteristic of the filter

does not always show all the resonant frequencies

clearly. At this stage, the tuning screws are adjusted

to minimize the return loss response of the filter as
far as possible before the coupling screws are in-

serted.

Finally, the coupling screws are inserted. At this

stage the operator needs to adjust all 13 of the

screws in such a way that the Sll of the filter meets

all the customer specifications.

In this process, steps 1 and 2 can be done very quickly

and easily by the operator. Most of the tuning time is

taken by steps 3 and 4. Therefore, the intent now is to

adapt the NILS to take over the tuning operation from step

3 onwards.
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Fig. 6. Flow chart of the machine learning system

guide filter tuning process.

operation for wave-

IV. ADAPTATION OF THE MLS FOR TUNING WGF’S

As mentioned at the beginning of Section II, the most

important steps when adapting the MLS to a problem are

to decide on a reference characteristic for the device and a

set of salient features.

When WGF’S are tuned manually, the log magnitude of

Sll is taken as a reference and the specifications of the

filter are based on this characteristic. However, the log

magnitude of S’ll is not unique. In other words, a filter

whose log magnitude meets all the specifications may still

have very poor group delay and phase characteristics.

Thus, the polar plot of &l has been taken as the reference

characteristic for the WGF’S, since it contains both the log

magnitude and the phase information (Fig. 5).

Having decided on the reference characteristic, the next

step is to decide on a set of features which reflects the

properties and the sensitivity of the screws on the polar

plot. The features which are used in the distance classifiers

are not necessarily the same as the features for the adap-

tive combiners. Therefore, let us first decide how we intend

to adapt the MLS to this particular problem.

(a) (b)

(c) (d)

Fig. 7. Effects of screw maladjustments on the polar plot. (a) Reference

filter. (b) 1 clockwise. (c) 3 clockwise. (d) 5 clockwise.

As mentioned in Section III, the first two steps of the

manual tuning of WGF’S can be done quickly and easily

by the operator. The first stage of the MLS tuning process

would be to bring the response of the filter as close as

possible to a good response. In terms of the polar plot, this

means that for a six-cavity filter wc can see the five loops

in the polar plot. This can be achieved by the use of the

distance classifiers which would give indications of which

screw brings the response of the filfer closer to the specifi-

cations. The next stage would be to use the adaptive

combiners for a finer adjustment of the screws. A separate

distance classifier can also be used to indicate how far the

response of the filter deviates frcm a good filter. This

classifier is trained on filters which meet all the required

specifications. Therefore it only has one cluster in the

feature space. The distance from the untuned filter to this

cluster would indicate how far away the filter is from the

specifications. The cluster also contains filters with differ-

ent tolerances in their specifications. Using this classifier,

the operator can decide when to stop the tuning process.

Fig. 6 shows a flow chart of the complete MLS approach

for the tuning of WGF’S. In the next section we consider

the use of the adaptive combiners for the last stage of the

tuning process.

A. Use of Adaptive Combiners

Initially, we assume that the filter coupling screws are

correctly adjusted and are left untouched. Therefore the

tuning screws will be taken as the adjustable parameters

for the filter. It was decided above that the polar plot of

Sll would be taken as the reference characteristic. Now we

need to decide on a set of salient features which will be

used in the system. Let us now assume that the polar plot

of the filter in Fig. 7(a) meets all the specifications. In

order to decide on a feature set, it is necessary to investi-

gate the effects on this polar plot when the tuning screws
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Fig,. 8. Schematic diagram showing the instrumentation configuration

used in the waveguide filter tuning application.

are maladjusted from their correct positions. Fig. 7(b)–(d)

shows the polar plots of & for maladjustment of selected

tuning screws. The rest of the screws have very similar

effects. From these polar plots we can conclude the follow-

ing points:

* Fig. 7(b) illustrates translation of the polar plot, i.e.,

the geometric mean of the polar plot has moved.

● Fig. 7(c) illustrates deformation and compression of

the polar plot, i.e., the circular shape of the polar

plot has been deformed into an elliptical shape.

o Fig. 7(d) illustrates the expansion and the contrac-

tion of the loops in the polar plot.

The salient features which are selected to describe these

geometric changes are as follows,

● Position of the mean of the polar plot, 2 features.

. Position of the beginning and the end of the polar

plot, 4 features.

● Center frequency of the filter, 1 feature.

e Area of the loops, (n – 1) features.

o Distance between the ceriter of the loops, (n – 1)

features.

Here n is the order of the filter, i.e., the number of cavities.

These features are calculated using the real and imaginary

parts of S1l. The feature extraction using the real and

imaginary parts of the polar plot is described in detail in

the next section.

B. Feature Extraction

Fig. 8 illustrates how the filters have been connected to

a commercial network analyzer (Hewlett Packard 8510).

The analyzer communicates with an HP300 series com-

puter through an HP-IB interface cable. The network

analyzer provides the real and imaginary parts of the polar

plot, i.e., x and y coordinates, in a discrete form. These

points are manipulated in order to generate the features

listed in the previous section.

The computer spans the passband of the filter and

collects between 60 and 101 points. The mean of the polar

plot can be calculated by averaging the x – y coordinates

of the polar plot. The beginning and the end of the polar

plot correspond to the first and the second edge frequen-

cies of the filter. The areas of the loops are calculated by

first estimating the points of intersections in the polar plot

and then by performing numerical integration over the

loops. After obtaining the points of intersection, the cen-

ters of the loops can be found by averaging the x – y

coordinates for each loop. The distance between the cen-

ters of the loops can then be found using the’ coordinates

of the loop centers.

The data collection and feature extraction part of the

MLS takes about 35 seconds to complete. The time taken

by the adaptive combiners to come up with a set of

adjustments is negligible compared to the above time.

Thus, a new adjustment can be made by the operator in

under one minute.

In the next section, we illustrate how the adaptive com-

biners have been used for fine tuning of a filter.

V. RESULTS

The output of the MLS consists of a graphical display of

the adjustment levels for each of the screws, which pro-

vides the magnitude and the direction of the adjustments,

the number of iterations, the maximum error, and the

screw which has generated the maximum error. Fig. 5

shows the magnitude response and the polar plot of a filter

which has been taken as the reference filter in the training

mode, i.e., a good filter. Fig. 9(a) shows the Sll of an

untuned filter, and Fig. 9(b) shows the output of the MLS

for this filter state. The maximum error is due to screw

number 5, and it is equal to – 1.5 units. Fig. 10(a) shows

the output of the MLS after four iterations, and Fig. 10(b)

shows the filter response at this stage. It can be seen that

the adjustment levels for all the screws are very close to O

and the maximum error is due to screw number 5 and is

equal to 0.23. At this stage the response of the filter is

within the specifications set by the reference filter.

VI. CONCLUSION

The MLS described in this paper can be thou@ of as

an expert-system shell. The overall structure of the system

(Fig. 1) is unchanged when adapting the system for a wide

variety of problems. The implementation of the MLS is in

Pascal and is organized in such a way that, in the training
mode, the user provides the system with a file which

contains the training feature sets and the desired output

values. In the case of the distance classifiers, the desired

values would be the name of the clusters in the feature

space; for the adaptive combiners, they would be the

required adjustment levels. The program will then generate

the mean and covariance matrices for each cluster in the

distance classifiers, and the weight matrix for the adaptive

combiners. The numbers of features, clusters, parameters,

and training examples are set by the user at the beginning

of the program. In the use mode, the program requires a

feature set from the DUT, calculates how far the new
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Fig. 9. (a) The Sll characteristics of an untuned filter (scale as in Fig.
5). Center frequency =10.531 GHz, bandwidth= 0.136 GHz, and mini-

mum loss = – 26 dB. (b) The MLS output for filter in (a).

feature set deviates from the predefine clusters in the

feature space, and estimates the magnitude and the direc-

tion of the adjustment required for each of the parameters.

Therefore the user needs only to interface the MLS pack-

age with its application program, which generates the

desired feature sets for the particular problem.

The high level of interaction between the screws on the

WGF and the sensitivity of the filter, provided a particu-

larly difficult problem for the MLS. However, the results

presented in this paper show that the tuning of WGI?’S can

be achieved by dividing the tuning process into two stages.

Here we only considered the use of the adaptive combiners

for fine tuning of the filter and also reduced the number of

adjustable parameters to the tuning screws, assuming that

the coupling screws are correctly adjusted and are left

untouched. Work is in progress to investigate the effects of

the coupling screws and how to adapt the MLS for the

first stage of the tuning process, i.e., use of distance

classifiers for rough tuning of the filter.

APPENDIX I

THE MAHALANOBIS DISTANCE CLASSIFIER

The Mahalanobis distance classifier is one of the similari-

ty measures used in the field of pattern recognition [3].

The main advantage of using the Mahalanobis distance is

when the points in the clusters are not normally dis-

tributed, i.e., there exist correlations between the features.

The correlation between the features is expressed by the

rNo . o+ I?. erat!on - 5 M,tx E,rov - 2.3 E-w@l 5

+4
c
I +3
o
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c
k +1

I “ —--—–– _—— -.——_
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Fig. 10. (a) The MLS output after four adjustments. (b) The SIl charac-

teristics corresponding to the tuned filter. Center frequency= 10.532

GHz, bandwidth= 0.138 GHz, and minimum loss= – 32 dB.

covariance matrix. The Mahalanobis distance, r12,between

the point ~ to the ith cluster ‘is given by

)“iZ=(~ – nzi)Tcz-y~ – )nI) (Al)

where ~, and Cl are the mean and the covariance matrices

of the i th cluster, respectively, andl are given by

Here N is the number of points in the cluster and T

denotes the matrix transpose operation. The form of the

covariance matrix corresponds to an ellipsoidal cluster

where the correlation between the features is expressed by

the nonzero terms in the nondiagonal elements of the

matrix.

APPENDIX 11

THE ADAPTIVE COMBINERS

The adaptive combiners employ techniques from the

field of adaptive signal processing [4]. There are p combin-

ers for p outcomes, i.e., one combiner for each outcome.

The input features to all the combiners are the same but

each combiner is trained on cliff erent desired values.

Fig. 11 illustrates the ith combiner where ~~(k) is the

present feature set, y(k) is the weight vector, and j(k) is
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the estimated combiner output. From Fig. 11 the estimated

output is

)(k) =g(k)y(k). (A4)

The error in the training mode can be expressed in terms

of the desired value, Y(k), and the estimated output as

follows:

e(k) =y(k)– j(k). (A5)

The RLS adaptive algorithm is used to adjust the weights

in order to minimize the mean squared error. It has been

shown [4] that the optimal weight, ~ .Pt, is given by the

Wiener [6] solution,

where @XXis the autocorrelation function of of X, and @XY

is the cross-correlation function of x and y. In the RLS

algorithm [4], [5], the present weights, ~(k), may be ex-

pressed in terms of the previous weights by

y(k) =M(k–l)+ R;~(k)~(k)e(k) (A7)

where R XX is an estimate of @XXgiven by

R;;(k) can be expressed in terms of a standard matrix

identity by

R;;(k) = R;;(k–1)

R;;(k–l)Z(k)Z~( k) R;;(k–l)
—

l+z~(k)ll;;( k-l)~(k) -
(A9)

The RLS algorithm guarantees convergence within 2N

input samples, where N is the number of weights, and the

convergence is not affected by the input signal coloration.

This form of RLS has an infinite memory. In other words,

the weights are functions of ~all the sample inputs. It is

useful to introdtice a forgetting factor into the algorithm in

order to give greater importance to the recent training

samples than to the old ones. In this way the combiners

are open to further training as the requirements are

changed. One way of accomplishing this would be to apply

a time-varying exponential window to the recursions. In

this case the recursion given for R;X1(k) in (A9) is modi-

fied to

R;:(k –l)x(k)xT(k)R;;(k –1).
A+&(k) R;;(k-l)x(k)

)

(A1O)

where O < A <1 but usually it is kept in the range 0.9<

A<l.
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