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Abstract —This paper investigates the use of a machine learning system
applied to the tuning of waveguide filters. This system employs techniques
from pattern recognition and adaptive signal processing. The manual
tuning of the waveguide filters is very time consuming and expensive and a
skilled operator is required. Here, the machine learning system is adapted
in such a way that it can assist an unskilled operator to perform fast and
accurate tuning of these filters.

I. INTRODUCTION

AVEGUIDE filters (WGF’s) are tuned once the
Wfilters have been assembled. The traditional ap-
proach to the tuning of these filters is to check the re-
sponse of the filter at a number of critical frequencies and
adjust a set of tuning screws in order to bring the filter
response within some predefined specification. This proce-
dure is carried out manually and can be thought of as a
humanly performed real-time optimization. This tuning
method is very time consuming and expensive and a skilled
operator is required. Therefore, automatic tuning of these
filters would be a more desirable and cost-effective alter-
native. In spite of the wide range of applications for
waveguide filters, there have not been many contributions
to the studies of computer-aided alignment of WGF’s. In
previous publications, standard procedures for manual
tuning of these filters have been described [1]-[3], but
these methods are not suitable for constructing a com-
puter-based tuning system. Work on computer-aided filter
alignment has been very limited [4], and these methods are
predominantly based on theoretical treatment and model-
ing of the filters.

In this paper a different approach is introduced for the
tuning of the waveguide filters. Here a machine learning
system (MLS) is adapted in such a way that it can assist an
unskilled operator to perform accurate and fast tuning of
the filters. The machine learning approach is based on the
manipulation of some raw data to extract a set of salient
features which have strong significance in the behavior of
the filters. These features are derived visually, by compar-
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Fig. 1. Block representation of the machine learning system.

ing the characteristics of a tuned filter with a faulty filter
with known levels of maladjustments.

In Section II, we briefly describe the main principles of
the MLS used. Section III gives an introduction to wave-
guide filters and illustrates how they are tuned manually.
In Section IV, we consider the adaptation of the MLS to
this problem. The MLS has been used for fine tuning of
WGPF’s and Section V presents some results. The MLS
approach is not yet a complete solution to this problem,
and some manufacturing tolerances have been ignored, but
this paper presents a new approach for the development of
an automated tuning system for WGF’s.

II. OUTLINE OF THE MACHINE LEARNING SYSTEM

Fig. 1 shows a block representation of the MLS used.
The overall system can be thought of as an equivalent to
an expert system, where there is a “training mode” and a
“use mode.” In the training mode, the expertise of a
skilled operator is represented and stored in such a way
that it can be accessed later in the use mode. The main
difference between the MLS and a conventional expert
system is in the way in which the information is obtained
and represented. In a conventional expert system, the
information is stored in the form of explicitly stated rules,
and in the use mode the system makes decisions by match-
ing the inputs to the predefined rules. In the MLS ap-
proach, ‘we employ techniques from pattern recognition
and adaptive signal processing to form two types of classi-
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fiers, distance classifiers and adaptive combiners. In the
training mode, the “expert” information is represented in
the form of mathematical relationships in the classifiers.

In general, the distance classifiers are used to narrow
down the problem area, and the adaptive combiners are
used for finer adjustments. When the MLS is used for any
application, the first step is to decide on a reference
characteristic for the device under test (DUT) which would
represent the specifications required from the device. This
reference characteristic must be unique for every set of
adjustments, since an optimal setting cannot be achieved.
The next step is to decide on a number of salient features
within the reference characteristic that reflect the proper-
ties and the sensitivity of the adjustable parameters de-
fined for the device. These two steps are of primary
importance in the adaptation of the MLS to a particular
problem, since the rest of the system depends on these
decisions. In the following sections, we describe the train-
ing and the use mode of the distance classifiers and the
adaptive combiners.

A. Distance Classifiers

As mentioned above, the distance classifiers are used to
distinguish between different states which may exist for
the device. In the training mode, an n-dimensional feature
space is formed (Fig. 2) where n is the number of features.
Next, a number of feature sets are collected for each state
of the device, and each feature set is represented as a point
in the feature space. By collecting a number of points
belonging to a particular state, we form a cluster. In the
use mode, a new feature set is generated from the DUT,
and this would again be represented as a point in the
feature space, i.e., point x in Fig. 2. In order to decide
which cluster this new point lies within, we find the
distance between x and each of the clusters, ie, r,, 7,, and
r;. The simplest form of classification consists in measur-
ing the geometric distance of the new point, x, from the
centroids of each cluster. The main disadvantage of this
method is that it does not take into account the distribu-
tion of the points in the clusters. A more general measure
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of the distance, known as the Mahalanobis distance [5] (see
Appendix I), can be used which requires not only the
centroids of each cluster but also the variances and the
covariances of the points within the clusters.

B. Adaptive Combiners

The adaptive combiners in the MLS are implemented
using / linear combiners in parallel, where [ is the number
of adjustable parameters in the device. Fig. 3(a) shows a
block representation of the adaptive combjners in the
training mode, and Fig. 3(b) illustrates the structare of one
combiner trained for one particular fault. During the train-
ing' mode, feature sets are collected from the DUT when
its performance meets the specification, i.e., it is close to a
good device, and also when the parameters of the device
are maladjusted to some known values. These feature sets
are represented as matrix x in Fig. 3(a). Corresponding to
x, matrix d is generated which contains the values of each
of the adjustable parameters of the DUT corresponding to
the measured features. For example, when the device is
behaving correctly, the corresponding desired values for all
the parameters would be zero. Using these two matrices as
the inputs to a recursive least squares algorithm (RLS) [6],
{7], see Appendix II, we estimate the weight matrix w for



168 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 1, JANUARY 1989

°IIp

Tuning Screws

® ®
o @ 3
OCeoo e D
—d )

0668

Coupling Screws

Fig. 4. Top view of a six-cavity waveguide filter.

the linear combiners. After training, the linear combiners
are supplied with the estimated weight values to provide a
parallel measurement system, Fig. 3(c), which indicates the
magnitude and the direction of the required adjustments in
order to bring the performance of a faulty device within
required specifications. Matrices x and d have dimensions
n by m and !/ by m, respectively, where m is the number
of training feature sets. The weight matrix w will have a
dimension n by /.

In order to summarize the principle of the MLS, the
following steps must be taken when adapting the MLS to
any application. These steps should not necessarily be
taken in the order given here.

1) Decide on the reference characteristics of the DUT
and the corresponding data collection technique.

2) Decide on a set of salient features to extract from
the reference characteristics.

3) Decide how the distance classifiers and the adaptive
combiners will be used.

The MLS described here allows “learning” at any time
in the use mode. In other words, if in the use mode the
MLS fails to indicate the correct adjustments, then, once
the faults have been found by some other means, the
corresponding feature set may be entered in the system as
a further training example. In this way, the MLS will
improve its performance with experience.

III. WaAveEGUIDE FILTERS (WGF’s)

The MLS has already been used for fault diagnosis in
communications equipment [8], [9], and the waveguide
filter example has been used as another application for the
MLS. There are two main reasons for this choice. One is
the fact that WGF’s are very sensitive to small maladjust-
ments of their tuning screws and there is a high level of
interaction between the screws. Therefore, it is a very
challenging problem for the MLS. The other is the fact
that these filters take a very long time to be tuned manu-
ally. As a typical example, a sixth-order filter, which has
13 screws, six for tuning and seven for coupling, would
take approximately 35-45 minutes to be tuned by a skilled
operator. Therefore, there is a demand for a computer-
based filter tuning system with the objective of reducing
the time taken to tune the devices.

Fig. 4 shows the top view of a six-cavity WGF. There
are two types of screw. One type is the tuning screw,
bigger in size; the other is the coupling screw. The tuning

©dB

Fig. 5. The S;; polar and log magnitude characteristics of a good filter.
For log magnitude, the vertical scale is 10 dB per division and the
horizontal scale is 20 MHz per division. The center line corresponds to
0 dB return loss. For polar plot, return loss is displayed radially from
the center on a lnear scale with a magnitude of 0.1 (—20 dB),
corresponding to the outer ring. Phase information is measured as
angular rotation from the right-hand horizontal axis. Markers display
complex response near to the band edges and the center frequency.
Filter center frequency =10.532 GHz, bandwidth = 0.138 GHz, and
minimum loss = 32.1 dB.

screws are used to move the resonant frequencies of the
corresponding cavities. The coupling screws between the
two cavities are used to couple the adjacent cavities, and
the two end coupling screws are used to couple the filter to
the outside world.

The filters used for this study were supplied by Ferranti
(Dundee, Scotland). In the production environment, the
operator tunes the filters manually by looking at the log
magnitude of the return loss of the filter, i.e., S;;. Fig. 5
shows a typical S}, characteristic which meets a certain set
of customer specifications. The procedure adapted at Fer-
ranti for the manual tuning of these filters can be summer-
ized as follows:

1) All the screws are removed.

2) The tuning screws are inserted one at a time, start-
ing from the input to the filter. Each time a screw is
inserted, it is turned clockwise to bring the resonant
frequency of the corresponding cavity within the
filter bandwidth.

3) When all the turning screws are inserted, there must
be n resonant frequencies in the passband, where n
is equal to the number of cavities in the filter. Thus
each tuning screw corresponds to a notch in Fig. 5.
However, the return loss characteristic of the filter
does not always show all the resonant frequencies
clearly. At this stage, the tuning screws are adjusted
to minimize the return loss response of the filter as
far as possible before the coupling screws are in-
serted.

4) Finally, the coupling screws are inserted. At this
stage the operator needs to adjust all 13 of the
screws in such a way that the S}; of the filter meets
all the customer specifications.

In this process, steps 1 and 2 can be done very quickly
and easily by the operator. Most of the tuning time is
taken by steps 3 and 4. Therefore, the intent now is to
adapt the MLS to take over the tuning operation from step
3 onwards.
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Fig. 6. Flow chart of the machine learning system operation for wave-
guide filter tuning process.

IV. ADAPTATION OF THE MLS FOR TUNING WGF’s

As mentioned at the beginning of Section II, the most
important steps when adapting the MLS to a problem are
to decide on a reference characteristic for the device and a
set of salient features,

When WGF’s are tuned manually, the log magnitude of
Sy is taken as a reference and the specifications of the
filter are based on this characteristic. However, the log
magnitude of S;; is not unique. In other words, a filter
whose log magnitude meets all the specifications may still
have very poor group delay and phase characteristics.
Thus, the polar plot of S;; has been taken as the reference
characteristic for the WGFs, since it contains both the log
magnitude and the phase information (Fig. 5).

Having decided on the reference characteristic, the next
step is to decide on a set of features which reflects the
properties and the sensitivity of the screws on the polar
plot. The features which are used in the distance classifiers
are not necessarily the same as the features for the adap-
tive combiners. Therefore, let us first decide how we intend
to adapt the MLS to this particular problem.
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Fig. 7. Effects of screw maladjustments on the polar plot. (a) Reference
filter. (b) 1 clockwise. (¢) 3 clockwise. (d) 5 clockwise.

As mentioned in Section IIl, the first two steps of the
manual tuning of WGF’s can be done quickly and easily
by the operator. The first stage of the MLS tuning process
would be to bring the response of the filter as close as
possible to a good response. In terms of the polar plot, this
means that for a six-cavity filter we can see the five loops
in the polar plot. This can be achieved by the use of the
distance classifiers which would give indications of which
screw brings the response of the filter closer to the specifi-
cations. The next stage would be to use the adaptive
combiners for a finer adjustment of the screws. A separate
distance classifier can also be used to indicate how far the
response of the filter deviates from a good filter. This
classifier is trained on filters which méet all the required
specifications. Therefore it only has one cluster in the
feature space. The distance from the untuned filter to this
cluster would indicate how far away the filter is from the
specifications. The cluster also contains filters with differ-
ent tolerances in their specifications. Using this classifier,
the operator can decide when to stop the tuning process.

Fig. 6 shows a flow chart of the complete MLS approach
for the tuning of WGF’s. In the next section we consider
the use of the adaptive combiners for the last stage of the
tuning process.

A. Use of Adaptive Combiners

Initially, we assume that the filter coupling screws are
correctly adjusted and are left untouched. Therefore the
tuning screws will be taken as the adjustable parameters
for the filter. It was decided above that the polar plot of
S1, would be taken as the reference characteristic. Now we
need to decide on a set of salient features which will be
used in the system. Let us now assume that the polar plot
of the filter in Fig. 7(a) meets all the specifications. In
order to decide on a feature set, it is necessary to investi-
gate the effects on this polar plot when the tuning screws
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Fig. 8. Schematic diagram showing the instrumentation configuration

used in the waveguide filter tuning application.

are maladjusted from their correct positions. Fig. 7(b)—(d)
shows the polar plots of S,; for maladjustment of selected
tuning screws. The rest of the screws have very similar
effects. From these polar plots we can conclude the follow-
ing points:

s Fig. 7(b) illustrates translation of the polar plot, i.e.,
the geometric mean of the polar plot has moved.

* Fig. 7(c) illustrates deformation and compression of
the polar plot, i.e., the circular shape of the polar
plot has been deformed into an elliptical shape.

¢ Fig. 7(d) illustrates the expansion and the contrac-
tion of the loops in the polar plot.

The salient features which are selected to describe these
geometric changes are as follows,

® Position of the mean of the polar plot, 2 features.

¢ Position of the beginning and the end of the polar
plot, 4 features.

e Center frequency of the filter, 1 feature.

® Area of the loops, (n —1) features.

® Distance between the center of the loops, (n—1)
features. ‘

Here n is the order of the filter, i.e., the number of cavities.
These features are calculated using the real and imaginary
parts of S;;. The feature extraction using the real and
imaginary parts of the polar plot is described in detail in
the next section.

B. Feature Extraction

Fig. 8 illustrates how the filters have been connected to
a commercial network analyzer (Hewlett Packard 8510).
The analyzer communicates with an HP300 series com-
puter through an HP-IB interface cable. The network
analyzer provides the real and imaginary parts of the polar
plot, i.e., x and y coordinates, in a discrete form. These
points are manipulated in order to generate the features
listed in the previous section.

The computer spans the passband of the filter and
collects between 60 and 101 points. The mean of the polar
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plot can be calculated by averaging the x—y coordinates
of the polar plot. The beginning and the end of the polar
plot correspond to the first and the second edge frequen-
cies of the filter. The areas of the loops are calculated by
first estimating the points of intersections in the polar plot
and then by performing numerical integration over the
loops. After obtaining the points of intersection, the cen-
ters of the loops can be found by averaging the x-y
coordinates for each loop. The distance between the cen-
ters of the loops can then be found using the coordinates
of the loop centers.

The data collection and feature extraction part of the
MLS takes about 35 seconds to complete. The time taken
by the adaptive combiners to come up with a set of
adjustments is negligible compared to the above time.
Thus, a new adjustment can be made by the operator in
under one minute.

In the next section, we illustrate how the adaptive com-
biners have been used for fine tuning of a filter.

V. RESULTS

The output of the MLS consists of a graphical display of
the adjustment levels for each of the screws, which pro-
vides the magnitude and the direction of the adjustments,
the number of iterations, the maximum error, and the
screw which has generated the maximum error. Fig. 5
shows the magnitude response and the polar plot of a filter
which has been taken as the reference filter in the training
mode, ie., a good filter. Fig. 9(a) shows the S;; of an
untuned filter, and Fig. 9(b) shows the output of the MLS
for this filter state. The maximum error is due to screw
number 5, and it is equal to —1.5 units. Fig. 10(a) shows
the output of the MLS after four iterations, and Fig. 10(b)
shows the filter response at this stage. It can be seen that
the adjustment levels for all the screws are very close to 0
and the maximum error is due to screw number 5 and is
equal to 0.23. At this stage the response of the filter is
within the specifications set by the reference filter.

V1. CONCLUSION

The MLS described in this paper can be thought of as
an expert-system shell. The overall structure of the system
(Fig. 1) is unchanged when adapting the system for a wide
variety of problems. The implementation of the MLS is in
Pascal and is organized in such a way that, in the training
mode, the user provides the system with a file which
contains the training feature sets and the desired output
values. In the case of the distance classifiers, the desired
values would be the name of the clusters in the feature
space; for the adaptive combiners, they would be the
required adjustment levels. The program will then generate
the mean and covariance matrices for each cluster in the
distance classifiers, and the weight matrix for the adaptive
combiners. The numbers of features, clusters, parameters,
and training examples are set by the user at the beginning
of the program. In the use mode, the program requires a
feature set from the DUT, calculates how far the new
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Fig. 9. (a) The §); characteristics of an untuned filter (scale as in Fig.
5). Center frequency =10.531 GHz, bandwidth = 0.136 GHz, and mini-
mum loss = —26 dB. (b) The MLS output for filter in (a).

feature set deviates from the predefined clusters in the
feature space, and estimates the magnitude and the direc-
tion of the adjustment required for each of the parameters.
Therefore the user needs only to interface the MLS pack-
age with its application program, which generates the
desired feature sets for the particular problem.

The high level of interaction between the screws on the
WGF and the sensitivity of the filter, provided a particu-
larly difficult problem for the MLS. However, the results
presented in this paper show that the tuning of WGF’s can
be achieved by dividing the tuning process into two stages.
Here we only considered the use of the adaptive combiners
for fine tuning of the filter and also reduced the number of
adjustable parameters to the tuning screws, assuming that
the coupling screws are correctly adjusted and are left
untouched. Work is in progress to investigate the effects of
the coupling screws and how to adapt the MLS for the
first stage of the tuning process, i.e., use of distance
classifiers for rough tuning of the filter.

APPENDIX |
THE MAHALANOBIS DISTANCE CLASSIFIER

The Mahalanobis distance classifier is one of the similar-
ity measures used in the field of pattern recognition [3].
The main advantage of using the Mahalanobis distance is
when the points in the clusters are not normally dis-
tributed, i.e., there exist correlations between the features.
The correlation between the features is expressed by the
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Fig. 10. (a) The MLS output after four adjustments. (b) The S;, charac-
teristics corresponding to the tuned filter. Center frequency =10.532
GHz, bandwidth = 0.138 GHz, and minimum loss = —32 dB.

covariance matrix. The Mahalanobis distance, r2, between
the point x to the ith cluster is given by

= (x=m) G z—m,) (A1)

where m, and C, are the mean and the covariance matrices
of the ith cluster, respectively, and are given by

(A2)

(A3)

Here N is the number of points in the cluster and T
denotes the matrix transpose operation. The form of the
covariance matrix corresponds to an ellipsoidal cluster
where the correlation between the features is expressed by
the nonzero terms in the nondiagonal elements of the
matrix.

APPENDIX 11
THE ADAPTIVE COMBINERS

The adaptive combiners employ techniques from the
field of adaptive signal processing [4]. There are p combin-
ers for p outcomes, i.e., one combiner for each outcome.
The input features to all the combiners are the same but
each combiner is trained on different desired values.

Fig. 11 illustrates the ith combiner where x7(k) is the
present feature set, w(k) is the weight vector, and (k) is
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the estimated combiner output. From Fig. 11 the estimated
output is

F(k)=x"(k)w(k). (A4)

The error in the training mode can be expressed in terms

of the desired value, y(k), and the estimated output as
follows: ‘

e(k) = y(k) = 9(k). (A3)
The RLS adaptive algorithm is used to adjust the weights
in order to minimize the mean squared error. It has been

shown [4] that the optimal weight, W is given by the
Wiener [6] solution,

opt?

I/_Vopf = (I));clq)xy (A6)

where @, is the autocorrelation function of of x, and @, ,
is the cross-correlation function of x and y. In the RLS
algorithm [4], [5], the present weights, w(k), may be ex-
pressed in terms of the previous weights by

w(k) =w(k-1)+ R (k)x(k)e(k) (A7)
where R, is an estimate of ®,, given by
k
R, = X x(n)x"(n). (A8)
n=0 .

R_}k) can be expressed in terms of a standard matrix
identity by
R(k) = R (k=1)

R (k—1)x(k)x"(k) RNk -1)

T LRk -Dx(l) M)

The RLS algorithm guarantees convergence within 2N
input samples, where N is the number of weights, and the
convergence is not affected by the input signal coloration.
This form of RLS has an infinite memory. In other words,
the weights are functions of all the sample inputs. Tt is
useful to introduce a forgetting factor into the algorithm in
order to give greater importance to the recent training
samples than to the old ones. In this way the combiners
are open to further training as the requirements are
changed. One way of accomplishing this would be to apply
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a time-varying exponential window to the recursions. In

this case the recursion given for R, (k) in (A9) is modi-

fied to '
1

R(k) =~

R_Mk—1
- Rk -1)

R Hk—-1)x(k)x"(k)R k-1
RS -Da(OFRRI-D |
A+ xT(k) R (k=1)x(k)
where 0 <A <1 but usually it is kept in the range 0.9 <
A<1.
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